In vivo resolution of multiexponential decays of multiple near-infrared molecular probes by fluorescence lifetime-gated whole-body time-resolved diffuse optical imaging.

نویسندگان

  • Walter Akers
  • Frederic Lesage
  • Dewey Holten
  • Samuel Achilefu
چکیده

The biodistribution of two near-infrared fluorescent agents was assessed in vivo by time-resolved diffuse optical imaging. Bacteriochlorophyll a (BC) and cypate-glysine-arginine-aspartic acid-serine-proline-lysine-OH (Cyp-GRD) were administered separately or combined to mice with subcutaneous xenografts of human breast adenocarcinoma and slow-release estradiol pellets for improved tumor growth. The same excitation (780 nm) and emission (830 nm) wavelengths were used to image the distinct fluorescence lifetime distribution of the fluorescent molecular probes in the mouse cancer model. Fluorescence intensity and lifetime maps were reconstructed after raster-scanning whole-body regions of interest by time-correlated single-photon counting. Each captured temporal point-spread function (TPSF) was deconvolved using both a single and a multiexponental decay model to best determine the measured fluorescence lifetimes. The relative signal from each fluorophore was estimated for any region of interest included in the scanned area. Deconvolution of the individual TPSFs from whole-body fluorescence intensity scans provided corresponding lifetime images for comparing individual component biodistribution. In vivo fluorescence lifetimes were determined to be 0.8 ns (Cyp-GRD) and 2 ns (BC). This study demonstrates that the relative biodistribution of individual fluorophores with similar spectral characteristics can be compartmentalized by using the time-domain fluorescence lifetime gating method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tomographic fluorescence lifetime imaging

Fluorescence lifetime imaging microscopy (FLIM) is a well-established technique (Bastiaens and Squire 1999; Berezovska et al. 2003; Selvin 2000; Vogel et al. 2006) that combines microscopic techniques with time-resolved detection to provide high-resolution lifetime images of thin tissue sections. This chapter concerns the in vivo time domain imaging of fluorescent contrast agents embedded in de...

متن کامل

Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations.

In vivo tissue imaging using near-infrared light suffers from low spatial resolution and poor contrast recovery because of highly scattered photon transport. For diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT), the resolution is limited to about 5-10% of the diameter of the tissue being imaged, which puts it in the range of performance seen in nuclear medicine. This...

متن کامل

Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice.

We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (tauswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz el...

متن کامل

Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice.

Fluorescence lifetime imaging can provide valuable diagnostic information relating to the functional status of diseases. In this study, a near-infrared (NIR) dye-labeled hexapeptide (abbreviated Cyp-GRD) was synthesized. In vitro, Cyp-GRD internalized in nonsmall cell lung cancer cells (A549) without observable cytotoxic or proliferative effects to the cells at a concentration up to 1x10(-4) M....

متن کامل

Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems.

The polarity of biological mediums controls a host of physiological processes such as digestion, signaling, transportation, metabolism, and excretion. With the recent widespread use of near-infrared (NIR) fluorescent dyes for biological imaging of cells and living organisms, reporting medium polarity with these dyes would provide invaluable functional information in addition to conventional opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular imaging

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2007